Title: | Partition Bipartite Network into Non-Overlapping Biclusters by Optimizing Bipartite Modularity |
---|---|
Description: | Function bipmod() that partitions a bipartite network into non-overlapping biclusters by maximizing bipartite modularity defined in Barber (2007) <doi:10.1103/PhysRevE.76.066102> using the bipartite version of the algorithm described in Treviño (2015) <doi:10.1088/1742-5468/2015/02/P02003>. |
Authors: | Tianlong Chen [aut], Weibin Zhang [cre, ctb], Suresh Bhavnani [cph, fnd] |
Maintainer: | Weibin Zhang <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.23.120.1 |
Built: | 2025-03-21 03:02:28 UTC |
Source: | https://github.com/wzhang40/bipartitemodularitymaximization |
This function partitions a bipartite network into non-overlapping biclusters by optimizing bipartite modularity defined in Barber (2007) using the bipartite version of the algorithm described in Treviño (2015).
bipmod(incid_mat, ITER = 10)
bipmod(incid_mat, ITER = 10)
incid_mat |
Incidence matrix of a bipartite network. |
ITER |
A positive integer representing the number of iterations used to maximizing modularity, (default=10). |
The function takes as input a bipartite network represented as an incidence matrix (using a matrix or a data frame) with non-negative values (the row sums and column sums must be positive, to ensure there are no disconnected nodes). The function partitions the rows and columns into non-overlapping submatrices (biclusters), and outputs the membership of rows and columns to a partition, and modularity (Q) representing the quality of the partitioning.
MODULARITY Modularity value (Q).
ASSIGN Integer labels representing partition of rows followed by columns in same order as incidence matrix.
Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102. <doi:10.1103/PhysRevE.76.066102>
Trevino, S., Nyberg, A., Del Genio, C. I., & Bassler, K. E. (2015). Fast and accurate determination of modularity and its effect size. Journal of Statistical Mechanics: Theory and Experiment, 2015(2), P02003. <doi:10.1088/1742-5468/2015/02/P02003>
data(example_data) bipmod(example_data)
data(example_data) bipmod(example_data)
A dataset consisting of anonymized patients (n=798) and symptoms (d=8), where each patient has one or more symptoms.
example_data
example_data
A data frame with 798 rows and 8 binary variables: